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LElTER TO THE EDITOR 

Computational complexity of the ground-state determination 
of atomic clusters 

L T Wille and J Vennik 
Laboratorium voor Kristallografie en Studie van de Vaste Stof, Rijksuniversiteit Gent, 
Krijgslaan 281, B9000 Gent, Belgium 

Received 8 February 1985 

Abstract. We prove that determining the ground state of a cluster of identical atoms, 
interacting under two-body central forces, belongs to the class of Np-hard problems. This 
means that as yet no polynomial time algorithm solving this problem is known and, 
moreover, that it is very unlikely that such an algorithm exists. It also suggests the need 
for good heuristics. 

The study of the morphology of small aggregates of atoms is important in a number 
of fields, e.g. nucleation theory, astrophysics, electronic structure calculations for atomic 
clusters, etc (Hoare 1979). An important improvement over hard-sphere models is 
obtained by assuming that the atoms are interacting via two-body central forces, 
derived, for example, from the Lennard-Jones or the Morse potentials (Hoare and 
Pal 1971). Using pair potentials u ( r )  between the atoms, the potential energy function 
of an N-atom cluster is defined as 

N 

V ( r ” )  =; u(ri  - r , ) .  
1J 

I f1 

This function determines the potential energy surface in the 3 N-dimensional configur- 
ation space of all possible vectors r N  = ( r , ,  r2, . . . , r N ) ,  where r, is the position vector 
of the ith atom in real space. In practice one uses a reduced configuration space of 
3 N  - 6 dimensions by excluding translations and rotations of the cluster as a whole. 
The potential energy function V ( r ” )  represents the total energy of the N atoms held 
motionless in the positions rI, by assumption of zero temperature. The potential energy 
surface is a complicated geometrical object, which possesses a number of local minima 
and saddle points. The most efficient algorithms for the determination of the local 
minima appear to be those based on the steepest descent technique (Hoare 1979). The 
number of local minimaahas been studied by Hoare and McInnes (1976, 1983) for 
Lennard-Jones and Morse potentials. This quantity seems to increase exponentially 
with the number of atoms in the cluster and this puts a limit on the cluster sizes that 
can be studied. It would be very interesting to investigate whether this great multiplicity 
also occurs in real clusters. 

The binding energy of the most stable configuration is an important quantity about 
which very little is known. The results of Hoare and McInnes (1983) indicate that the 
energy gap between the most stable and next stable isomers is surprisingly large. This 
is in agreement (except for N = 6) with self-consistent quantum mechanical calculations 
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for Na clusters by Martins et a1 (1984). Another property of the absolute minimum 
configurations is the occurrence of non-crystallographic structures, e.g. those with 
fivefold symmetry. It would be very interesting to extend pair potential calculations 
to larger N values, in order to confirm these trends, and in this letter we investigate 
whether fast algorithms for the ground-state determination are possible. For this 
purpose we have to study the computational complexity of the cluster problem. 

An important direction in the field of computational complexity concerns the study 
of non-deterministic polynomial-time complete (NP-complete) problems (Garey and 
Johnson 1979). Many classical problems in mathematics and computer science belong 
to this class. These problems are all equivalent in the sense that either all of them or 
none of them may be solved using polynomial-time algorithms. In spite of concentrated 
efforts in the last decades no polynomial-time algorithms for the problems in the class 
have been found and they are therefore considered to be intractable. It is generally 
believed that no such algorithms exist, although this conjecture has not been proved. 
There is some evidence that it might not be provable within the framework of formal 
set theory (Hartmanis and Hopcroft 1976). The term NP-complete is used for decision 
problems, whereas the corresponding optimisation problems are called Np-hard, since 
a polynomial-time algorithm for these problems would also solve the NP-complete 
problem. Recently it has been proved that two formulations of the frustration model 
of a three-dimensional spin-glass are Np-hard (Barahona 1982, Bachas 1984, see also 
Kirkpatrick 1979). In physics, optimisation problems arise quite naturally and it seems 
safe to speculate that many notoriously difficult physical problems are Np-hard. In 
this letter we will prove that a certain plausible formulation of the cluster ground-state 
problem indeed belongs to this class. 

A discrete version of the cluster problem is the following. ‘A number of points in 
real space is given and the interactions between any two points are known. In which 
way can N points be occupied so as to minimise the sum of their interactions?’. A 
few remarks are in order here. If the interactions have a repulsive character near the 
origin and tend to zero at infinity with a minimum in between, then it is obvious that 
the atoms will tend to be in a finite region of space and so a finite number of points 
will be sufficient. However, the number of points might as well be infinite, since this 
can always be reduced to the previous case by putting the interactions equal to +cc 
in the unwanted region. Furthermore, by taking the distance between neighbouring 
points arbitrarily small one can always approximate to an arbitrary degree of accuracy 
the minimal configuration corresponding to the continuum case. Using a discrete 
version of the problem is equivalent to the use of finite precision arithmetic in, for 
example, a steepest-descent method. Note that we do not specify that the points form 
a regular grid, nor do we force the interactions to be the same between points that lie 
the same distance apart. We return to this last point later. 

Next we transform the discrete cluster problem to a graph theoretical version 
(Mehihorn 1984). A graph G = ( V ,  E )  consists of a set of vertices V and a set of edges, 
i.e. (unordered) pairs of vertices, E. We will deal with cliques, in which there is an 
edge between any two different vertices. If the edges are given weights w(e), Ve E E, 
equal to the interaction between the vertices, then the discrete cluster problem is 
equivalent to selecting N different vertices { i ;  i = 1, . , , , N }  so that 

f w(e)=minimal. 
e = (  t.1) 

In order to show that the cluster problem is NP-hard we will use a proof by restriction 
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(Garey and Johnson 1979), i.e. we will show that it contains a known NP-hard problem 
as a special case. Thus a polynomial-time algorithm for the general problem would 
also solve the subproblem in polynomial time. 

The problem that will be shown to be a special instance of the cluster optimisation 
is the well known travelling salesman problem (Garey and Johnson 1979, Held e? a1 
1984). In its general form one asks for a minimal tour between N cities {c, ; i = 1, . . . , n} 
with known distances d(c, ,  c,) (not necessarily obeying a triangle inequality). This 
problem remains NP-hard under severe restrictions, e.g. even if the distances are either 
1 or 2 .  It is also Np-hard if the Euclidean distance is used (Papadimitriou 1977). We 
now transform the general travelling salesman problem as follows. Construct a graph 
with N ( N -  1) vertices labelled by (c,, cj)i, j =  1 , .  . . , N ;  i # j .  

The weights of the edges, 

e = {(Cl, Cj), (CL, C I ) )  ( 3 )  
are defined as 

if i # k, j # 1 
[ if i = k, j # I 

i f j = I , i # k  
i f I = i ,  k = j  (4) 

= d(Ck, CI )  i f l = i ,  k # j  
if k = j, 1 # i 

(see figure 1). Selecting N vertices, { ( q I ) ,  c ~ ( , + ~ ) ) ;  i = 1, .  . . , N, c ~ ( ~ + ~ )  = cT(,)}, so 
that the sum of the weights is minimal, evidently yields a minimal tour 
(cm(,], c, ,(~),  . . . , c , ( ~ ) )  solving the travelling salesman problem. Thus it is clear that 
the travelling salesman problem is a special instance of the cluster optimisation problem. 
Since the subproblem is Np-hard, so must be the general problem. This completes 
the proof of the NP-hardness of the cluster problem. 

We conclude with a few remarks. In our formulation of the cluster problem we 
have not assumed that the interactions between points that lie.the same distance apart 

I = d(cz, c,) 

Figure 1. Graph representation of the travelling salesman problem. The N (  N - 1)  vertices 
are labelled by pairs of cities and the edges have certain weights associated with them. 
The problem is to select N vertices, so as to minimise the sum of the weights on the edges 
between selected vertices. 
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have the same value, i.e. the pair potential was not assumed to be spherically symmetric. 
However, even under this assumption the problem remains Np-hard, as can easily be 
seen by comparing it to the general and the Euclidean travelling salesman problem 
(Garey and Johnson 1979). Nevertheless, it is possible that extra assumptions on the 
nature of the interactions reduces the clustei problem to a tractable one. This is the 
case, for example, for the frustration model, which is NP-hard in three dimensions 
(Barahano 1982, Bachas 1984), but the two-dimensional version is solvable in poly- 
nomial time (Bieche et a1 1980, Barahona er a1 1982). Finally, we note that the problem 
of enumerating the number of local minima in a cluster (Hoare and McInnes 1976, 
1983) must also be Np-hard. Indeed, a polynomial-time algorithm for this problem 
must necessarily give a number of local minima which is a polynomial function of the 
number of atoms in the cluster. It is then trivial to determine the absolute minimum 
configuration in polynomial time, in contradiction with the fact that this problem is 
NP-hard. 

Proving that a problem is NP-hard is not a goal in itself, but rather an indication 
that a heuristic method of solution, giving a near-optimal solution in polynomial time 
is needed. Recently, a very interesting optimisation method for NP-complete problems 
was proposed by Kirkpatrick et al (1983). It is based on the similarity between 
combinatorial optimisation and statistical mechanisms. The method uses the 
Metropolis procedure (Metropolis et al 1953), but considers the temperature as a 
control parameter. By slowly decreasing this parameter (‘cooling’), the system can be 
‘frozen’ into the state of minimal energy. The applicability of this approach to 
optimisation problems was analysed by Vannimenus and MCzard (1984). The method 
was applied to the travelling salesman problem (Kirkpatrick er a1 1983) and to the 
optimisation of computer design (Kirkpatrick et al 1983, Siarry and Dreyfus 1984). 
We are currently investigating the applicability of this ‘simulated annealing’ procedure 
to the cluster problem and will present our results in future publications, 
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